



## **2018** Marking Scheme

| Grade    | Mark Required       |       | « condidator cohiavina anada |
|----------|---------------------|-------|------------------------------|
| Awarded  | (/ <sub>130</sub> ) | %     | % canalates achieving grade  |
| A        | 88+                 | 67.7% | 31.5%                        |
| В        | 73+                 | 56.2% | 27.6%                        |
| С        | 59+                 | 45.4% | 23.2%                        |
| D        | 52+                 | 40%   | 8.1%                         |
| No award | <52                 | ×40%  | 9.6%                         |

| Section:      | Multiple Choi | ce  | Extended A | nswer | Projec | ct  |
|---------------|---------------|-----|------------|-------|--------|-----|
| Average Mark: | 18.8          | /30 | 39.3       | /70   | 19.1   | /30 |

| 20       | )18    | Adv                    | / Higher Chemistry Marking Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|--------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MC<br>Qu | Answer | %<br>Pupils<br>Correct | Reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1        | A      | 97                     | ☑A Beta particles which are electrons emitted from the nucleus<br>☑B Gamma rays are a form of electromagnetic radiation with wavelength & frequency<br>☑C Infrared is a form of electromagnetic radiation with wavelength & frequency<br>☑D ultraviolet is a form of electromagnetic radiation with wavelength & frequency                                                                                                                                                                                                                                                                                                  |
| 2        | D      | 98                     | <ul> <li>A s-block is found in groups 1+2 of the periodic table</li> <li>B p-block is found in groups 2 through to group 0 of the periodic table</li> <li>C d-block is found between groups 2+3 of the periodic table (transition metals)</li> <li>D f-block is the two groups at the bottom of periodic table (Actinides and Lanthanides)</li> </ul>                                                                                                                                                                                                                                                                       |
| 3        | A      | 35                     | The d-orbital shown ( $d_{xy}$ ) in the question will hold a maximum of two electrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4        | D      | 55                     | $F \xrightarrow{F} F \xrightarrow{F} F \xrightarrow{F} F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5        | В      | 38                     | Ni atom: 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>8</sup> 4s <sup>2</sup> ∴ Ni <sup>2+</sup> ion: 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>8</sup><br>■ A Ni <sup>2+</sup> ions have 8 electrons in the 3d shell as 4s electrons are removed before 3d<br>■ B The six electrons occupy the three lower 3d orbitals after 3d splits into 2 levels<br>■ C The ligands in the complex split the 3d orbitals into two levels.<br>■ D Ni <sup>2+</sup> ions have 8 electrons in the 3d shell as 4s electrons are removed before 3d |
| 6        | С      | 89                     | <ul> <li>☑A Oxidation number of Mn in MnO4<sup>-</sup> = +7</li> <li>☑B Oxidation number of Mn in MnO4<sup>2-</sup> = +6</li> <li>☑C Oxidation number of Mn in MnO4<sup>3-</sup> = +5</li> <li>☑D Oxidation number of Mn in MnO2 = +4</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |
| 7        | A      | 65                     | <ul> <li>☑A increase in temperature decreases K and decreases concentration of SO₂</li> <li>☑B increase in temperature favours reverse endothermic reaction ∴ less products</li> <li>☑C increase in temperature favours reverse endothermic reaction ∴ K decreases</li> <li>☑D increase in temperature favours reverse endothermic reaction ∴ K decreases</li> </ul>                                                                                                                                                                                                                                                        |
| 8        | D      | 65                     | H <sub>2</sub> CO <sub>3</sub> + CN <sup>-</sup> $\longrightarrow$ HCN + HCO <sub>3</sub> <sup>-</sup><br>Acid Base Conjugate Acid Conjugate Base Accepts H <sup>+</sup> Formed when Base accepts H <sup>+</sup> Formed when Acid loses H <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                      |
| 9        | В      | 54                     | $pH = 8.5 \therefore -\log_{10}[H^+] = 8.5 \qquad \therefore \ \log_{10}[H^+] = -8.5 \qquad \therefore \ [H^+] = 10^{-8.5} = 3.16 \times 10^{-9} \text{ mol } l^{-1}$ $[H^+] [OH^-] = 10^{-14} \qquad \therefore  [OH^-] = \frac{10^{-14}}{[H^+]} = \frac{1 \times 10^{-14}}{3.16 \times 10^{-9}} = 3.16 \times 10^{-6} \text{ mol } l^{-1}$                                                                                                                                                                                                                                                                                |
| 10       | С      | 58                     | <ul> <li>☑A Catalysts do not change the position of equilibrium</li> <li>☑B H<sub>3</sub>O<sup>+</sup> ions are a product so adding sulphuric acid will shift equilibrium to left</li> <li>☑C NaOH neutralises H<sub>3</sub>O<sup>+</sup> ions so removing a product and shifts equilibrium to right</li> <li>☑D C<sub>3</sub>H<sub>7</sub>COO<sup>-</sup> ions are a product so adding sulphuric acid will shift equilibrium to left</li> </ul>                                                                                                                                                                            |
| 11       | D      | 48                     | <ul> <li>A sodium sulphate solution is neutral pH=7 (strong acid v strong alkali)</li> <li>B lithium chloride solution is neutral pH=7 (strong acid v strong alkali)</li> <li>C ammonium nitrate solution is acidic pH&lt;7 (strong acid v weak alkali)</li> <li>potassium propanoate solution is alkaline pH&gt;7 (weak acid v strong alkali)</li> <li>h<sup>*</sup> ions join up with propanoate ions to form molecules of propanoic acid. Water molecules then split into ions to replace H<sup>*</sup> ions but concentration of OH<sup>-</sup> builds up as H<sup>*</sup> is removed.</li> </ul>                       |

|    |   |      | 🗷 A sodium chloride is 1                                                                          | nade from a strong a                                 | lkali so no buffer foi                  | rms                      |
|----|---|------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------|
| 12 | D | 71   | ☑B buffers form when salt of a weak alkali (ammonium chloride) dissolves in a weak acid (ammonia) |                                                      |                                         |                          |
| 12 | D | /4   | 🗷 C sodium hydroxide is                                                                           | s a strong acid and no                               | buffer forms                            |                          |
|    |   |      | 🗷 D sodium hydroxide i                                                                            | s a strong acid and no                               | buffer forms                            |                          |
|    |   |      | ΔG=ΔΗ-ΤΔS ∴ ΔG-Δ                                                                                  | ∆H = -T∆S                                            |                                         |                          |
|    |   |      | If $\Delta G$ - $\Delta H$ is approximately                                                       | / zero then -T $\Delta$ S must c                     | also be approximately >                 | kero. This means ∆S must |
|    |   |      | be approximately zero the                                                                         | en there must be little c                            | change to disorder duri                 | ing the reaction.        |
| 13 | D | D 54 | ► A CO₂ gas released w                                                                            | hich increases disord                                | ler and increases $\Delta S$            |                          |
|    | _ |      | ⊠B Two gases formed ·                                                                             | from a solid which inc                               | creases disorder and                    | increases ∆S             |
|    |   |      | EC H2 gas released wh                                                                             | ich increases disorde                                | r and increases $\Delta S$              |                          |
|    |   |      | ⊠D Solid and an ion fur                                                                           | ning into a solid and a                              | an ion keeps disordei                   | r level (∆S) similar     |
|    |   |      | A the overall order is                                                                            | s the sum of the indiv                               | vidual orders over                      | all order = 1+2 =3       |
|    |   |      | B This reaction must he                                                                           | ave second step as equal<br>2 determining step has t | I no. of moles of $P + Q$               | are used up in the       |
| 14 | В | 66   | P A second particle of                                                                            | of P must react in the o                             | ther step                               | ing with one particle of |
|    |   |      | EC Rates of reaction alwo                                                                         | ays decrease as concent                              | tration of reactants de                 | creases                  |
|    |   |      | 🗷 D As P is first order the                                                                       | en doubling [P] will doub                            | ole the rate of reaction                | 1                        |
| 15 | D | 57   | Bond                                                                                              | С-Н                                                  | C-C                                     | C=C                      |
| 15 | В | 57   | Type of hybridisation                                                                             | sp <sup>3</sup> hybridisation                        | sp <sup>3</sup> hybridisation           | sp hybridisation         |
|    |   |      | ЧЧ                                                                                                |                                                      |                                         |                          |
|    |   |      | C C H                                                                                             |                                                      | formula CILLC                           |                          |
| 16 | C | 63   |                                                                                                   | ( (0, 10)                                            |                                         |                          |
|    |   |      | H O C C H                                                                                         | gfm = (8x12)                                         | + (6x1) + (1x16) =                      | = 96+6+16 = 118g         |
|    |   |      | Н                                                                                                 |                                                      |                                         |                          |
|    |   |      | ☑A W and X in same po                                                                             | sition in both diagram                               | ms but Z and Y in op                    | posite positions         |
| 17 | Λ | 20   | B XYZ on bottom are                                                                               | in in same anti-clock                                | wise as comparison d                    | liagram.                 |
| 1/ | A | 22   | 🗷 C XYZ on bottom are                                                                             | in in same anti-clock                                | wise as comparison d                    | liagram.                 |
|    |   |      | ED XYZ on bottom are                                                                              | in in same anti-clock                                | wise as comparison c                    | diagram.                 |
|    |   |      | ⊠A sodium + butan-1-o                                                                             | l react to form sodiur                               | m butoxide CH3CH2C                      | H₂CHO⁻Na⁺ + H₂           |
| 18 | A | 27   | 図 Sodium + butanoic a                                                                             | icid would form sodiul                               | m butanoate + hydro                     | gen                      |
|    |   | 5/   | Sodium hydroxide d                                                                                | loes not react with all                              | cohols                                  | ata i huidaa aan         |
|    |   |      | Socium nyaroxide +                                                                                | · Dutanoic acia would                                | torm socium butanoc<br>a an tripla band | ate + nyarogen           |
|    |   |      | R Oxidation: Increasi                                                                             | ing the oxygen : hydro                               | ogen ratio in a compo                   | ound                     |
| 19 | C | 44   | MC Hydrolysis: spitting                                                                           | nig me oxygen i nyan<br>ninto two molecules w        | vith water added at I                   | break                    |
|    | _ |      | ED Hydrogenation: Ad                                                                              | dina hvdroaen across                                 | a double bond or tri                    | ple bond                 |
|    |   |      | <u> </u>                                                                                          | Flement                                              |                                         |                          |
|    |   |      |                                                                                                   | Maga                                                 | 160 20                                  |                          |
|    |   |      |                                                                                                   | Muss                                                 | 16 2                                    |                          |
|    |   |      |                                                                                                   | No. of moles                                         | 63.5 16                                 |                          |
| 20 | B | 12   |                                                                                                   | (divide % by gfm)                                    | = 0.252 = 0.125                         |                          |
|    |   |      |                                                                                                   | Mole ratio                                           | 0.252 0.125                             |                          |
|    |   |      |                                                                                                   | (divide through by smallest value)                   | = 2 02 1 00                             |                          |
|    |   |      |                                                                                                   | Round to Whole Number                                | 2 1                                     |                          |
|    |   |      | XA afm CH3OCOCH3                                                                                  | = (3x12)+(6x1)+(2x16                                 | 5) = 36+6+32 = 74a                      |                          |
| 21 |   | 01   | ⊠B gfm CH <sub>3</sub> CH <sub>2</sub> COOH                                                       | = (3x12)+(6x1)+(2x16                                 | b) = 36+6+32 = 74q                      |                          |
| 21 | C | 81   | ☑C gfm CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> N                          | H <sub>2</sub> = (4×12)+(11×1)+(1×14                 | 4) = 48+11+34 = 73g                     |                          |
|    |   |      | ⊠D gfm CH <sub>3</sub> CH(OH)CH <sub>2</sub> C                                                    | $H_3 = (4 \times 12) + (10 \times 1) + (1 \times 1)$ | 6) = 48+10+16 = 74g                     |                          |
|    |   |      | 凶 Absorption peak at                                                                              | 3100 - 3000cm <sup>-1</sup> due                      | e to C-H stretch in b                   | enzene ring              |
| 22 | C | 84   | B Absorption peak at                                                                              | 2962 - 2853cm <sup>-1</sup> due                      | e to C-H stretch in a                   | n alkane                 |
|    |   |      | No absorption peak                                                                                | at 1/30 - 1/1/cm <sup>-1</sup> a                     | s there is no C=U are                   | omatic ester in eugenol  |
| 1  | 1 | 1    | IN ADSOLDTION DEAK at                                                                             | 1100 - 10/0cm - due                                  | 10 C-O STRETCH IN all                   | KVI etner                |

| 23 | A | 96 | <ul> <li>A Agonist: Binds to the receptor and causes an internal response in the cell</li> <li>B Antagonist: Bind to the receptor but does not cause internal response in the cell</li> <li>C Inhibitor: Block the substrate from entering the receptor</li> <li>D Receptor: Protein in membrane of cells that allows molecules to bind with it.</li> </ul>                                                                                                                                             |
|----|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |   |    | <b>n</b> o. of mol = volume x concentration = 0.05litres x 2 mol $l^{-1}$ = 0.1mol                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24 | В | 54 | concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.1 \text{ mol}}{0.25 \text{ litres}}$ = 0.4 mol l <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                     |
| 25 | В | 75 | <ul> <li>☑A CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CHO is an aldehyde and is miscible with water</li> <li>☑B CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> is an ether and is immiscible with water</li> <li>☑C CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>COOH is an carboxylic acid and is miscible with water</li> <li>☑D CH<sub>3</sub>CH(OH)CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> is an alcohol and is miscible with water</li> </ul> |
| 26 | D | 52 | 図A This is a step in a recrystallisation technique<br>図B This is a step in a recrystallisation technique<br>図C This is a step in a recrystallisation technique<br>図D This is a step in gravimetric analysis to show all dissolved ion has precipitated.                                                                                                                                                                                                                                                 |
| 27 | В | 62 | <ul> <li>A Purification should give a melting point over a narrower range</li> <li>B Recrystallisation raises the melting point and narrows the temperature range</li> <li>C Impurities lower the melting point so purification raises the melting point</li> <li>D Impurities lower the melting point so purification raises the melting point</li> </ul>                                                                                                                                              |
| 28 | С | 82 | <ul> <li>A Desiccators remove moisture from the atmosphere not oxygen</li> <li>B Heating the sample removes water from the sample, not the desiccator.</li> <li>C While sample is cooling in desiccator, moisture cannot be reabsorbed by the sample</li> <li>D Desiccators do not prevent decomposition of sample, probably in the heating stage</li> </ul>                                                                                                                                            |
| 29 | D | 33 | <ul> <li>A The distance moved by the solvent does not alter the value of the R<sub>f</sub> value</li> <li>B The sample will move the same distance regardless of concentration</li> <li>C The length of TLC plate is not a factor in the R<sub>f</sub> value</li> <li>D The solvent used decides how far the sample moves and the R<sub>f</sub> value.</li> </ul>                                                                                                                                       |
| 30 | С | 63 | <ul> <li>A Distillation separates the chemicals while refluxing returns the chemical to flask</li> <li>B Distillation separates the chemicals while refluxing returns the chemical to flask</li> <li>C Coldest water (from tap) should be nearest hot vapours entering condenser</li> <li>D If the water travels against the flow in condenser arm then the hottest water is nearest the flask and the vapour will travel further up the condenser</li> </ul>                                           |

| 2018 Adv Higher Chemistry Marking Scheme |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Long<br>Qu                               | Answer                                                                         | Reasoning                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| <b>1a</b> (i)                            | sodium                                                                         | From page15 of data booklet: FLAME COLOURS         Element       Barium       Calcium       Copper       Lithium       Potassium       Sodium       Strontium         Wavelength /nm       554       620       522       671       405       589       650         Colour       green       orange-red       blue-green       crimson       lilac       orange-yellow       red |  |  |  |
| <b>1a</b> (ii)                           | 425nm                                                                          | $E = \frac{L \times h \times c}{\lambda} \therefore \lambda = \frac{L \times h \times c}{E} = \frac{6.02 \times 10^{23} \text{mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{282 \times 1000 \text{ J mol}^{-1}}$ $= 4.25 \times 10^{-7} \text{ m}$ $= 425 \text{ nm}$                                                                |  |  |  |
| <b>1a</b> (iii)                          | 87                                                                             | Relative Intensity 375<br>Relative Intensity 75<br>= 87mg kg <sup>-1</sup> × <sup>75</sup> / <sub>375</sub><br>= 87mg kg <sup>-1</sup>                                                                                                                                                                                                                                          |  |  |  |
| 1b(i)                                    | Orbitals fill up<br>in order of<br>increasing energy                           | Aufbau Principle:<br>Electrons fill up in order of increasing energy:<br>1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 8s<br>6s 6p 6d 7s 5f 6d 7p 8s                                                                                                                                                                                                                 |  |  |  |
| 1b(ii)                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2a(i)                                    | $K_{a} = \frac{[HOOCCH_{2}CH(OH)COO^{-}][H_{3}O^{-}]}{[HOOCCH_{2}CH(OH)COOH]}$ | $H_{2}O \text{ is both a reactant and the solvent } \therefore [H_{2}O] = 1$ $K_{\alpha} = \frac{[HOOCCH_{2}CH(OH)COO^{-}]^{1} \times [H_{3}O^{+}]^{1}}{[HOOCCH_{2}CH(OH)COOH]^{1} \times [H_{2}O]^{1}} = \frac{[HOOCCH_{2}CH(OH)COO^{-}][H_{3}O^{+}]}{[HOOCCH_{2}CH(OH)COOH]}$                                                                                                 |  |  |  |
| 2a(ii)                                   | Equation showing:                                                              | $HOOCCH_2CH(OH)COO^- + H_2O \implies OOCCH_2CH(OH)COO^- + H_3O^+$                                                                                                                                                                                                                                                                                                               |  |  |  |
| 2b(i)                                    | 2.90                                                                           | $pH = \frac{1}{2}pK_{a} - \frac{1}{2}log_{10}c$ $= -\frac{1}{2}log_{10}K_{a} - \frac{1}{2}log_{10}c$ $= -\frac{1}{2}log_{10}(3.2\times10^{-4}) - \frac{1}{2}\times log_{10}(0.0051)$ $= (-\frac{1}{2}\times-3.49) - (\frac{1}{2}\times-2.29)$ $= 1.75 - (-1.15)$ $= 2.90$                                                                                                       |  |  |  |
| 2b(ii)                                   | Hydrogen bonding<br>between chains                                             | Each unit within a pectin chain has two hydroxyl -OH groups which would allow hydrogen bonding between the pectin chains and thicken the jam.                                                                                                                                                                                                                                   |  |  |  |
| За                                       | All four of the following required:                                            | Dissolve sodium<br>carbonate in<br>deionised waterTransfer the solution<br>and the rinsingsUse of a 250cm³<br>standard/volumetric<br>flaskMake up to the line<br>flask with deionised<br>water                                                                                                                                                                                  |  |  |  |

|                |                                           | Average titre = $\frac{19.5 + 19.4}{2}$ = 19.45 cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                       |                                                                |                                                     |                                                           |                 |  |
|----------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-----------------|--|
|                | 0.0040                                    | <b>no.</b> of mol = volume x concentration = 0.01945 litres x 0.358 mol $l^{-1} = 6.97 \times 10^{-3}$ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                       |                                                                |                                                     |                                                           |                 |  |
| 3b(i)          |                                           | Na <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $O_3 + 2H$                           | CI -                  | → 2Na                                                          | aCl +                                               | $-H_{2}O+C$                                               | $O_2$           |  |
|                | 0.0346m01                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                       |                                                                |                                                     |                                                           |                 |  |
|                |                                           | 3.48×10-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>3</sup> mol 6.97×10             | D⁻³ mol               | • • • •                                                        | 40 40 3                                             | 2 .                                                       |                 |  |
|                |                                           | 25cm <sup>3</sup> sod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ium carbonate sc<br>ium carbonate sc | Jution                | ▲ → 3                                                          | 48x10 <sup>-3</sup> .<br>48x10-2                    | <sup>2</sup> mol                                          |                 |  |
|                |                                           | gfm Na <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = (2x23)+(1x12)+(3                   | x16) = 46             | 0+12+48 = 106g                                                 | .40X10                                              | mor                                                       |                 |  |
|                |                                           | $mass = no. of mol \times gfm = 0.0348 \times 106 = 3.69g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                       |                                                                |                                                     |                                                           |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mass of water                        | = mas<br>sodi         | s of hydrated                                                  | mass of<br>sodiun                                   | t unhydrated<br>n carbonate                               |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mass of water                        | =                     | 8.10g -                                                        |                                                     | 3.69g                                                     |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mass of water                        | =                     | 4.41g                                                          |                                                     | 40                                                        |                 |  |
| 21             | 7                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mass                                 |                       | 3 690                                                          |                                                     | 4 410                                                     |                 |  |
| <b>3D</b> (ii) | /                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111035                               |                       | 3.69                                                           |                                                     | 4.41                                                      |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no. of mol                           |                       | 106                                                            |                                                     | 18                                                        |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                    |                       | = 0.0348                                                       | =                                                   | 0.245                                                     |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Divide by                            |                       | 0.0348                                                         | _                                                   | 0.0348                                                    |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | smallest value                       | 2                     | = 1                                                            | =                                                   | = 7.04                                                    |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Formula of hyd                       | drated                | sodium carbon                                                  | ate: No                                             | a <sub>2</sub> CO <sub>3</sub> •7H <sub>2</sub> O         |                 |  |
|                |                                           | 3 ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rk answer                            | 2                     | mark answer                                                    |                                                     | 1 mark answ                                               | er              |  |
|                |                                           | Demonstrates a good         Demonstrates a reasonable           understanding of the chemistry         understanding of the chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | y uno                 | emonstrates a <u>limited</u><br><b>derstanding</b> of the chen | nistry                                              |                                                           |                 |  |
| 3c             | Open Question                             | involved. A good comprehension of involved, making some i the chemistry has provided in a statement(s) which are relevant to statement (s) |                                      |                       | inv<br>nt to sor                                               | volved. The candidate ha<br>me statement(s) which c | s made<br>1re                                             |                 |  |
|                | to include:                               | logically correct, including a the situation, showing that the statement of the principles problem is understood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                       |                                                                | e rel<br>the                                        | levant to the situation, s<br>at at least a little of the | showing<br>e    |  |
|                |                                           | involved and the application of chemistry within the problem is these to respond to the problem. understood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                       |                                                                |                                                     |                                                           |                 |  |
| 4a             | One answer from:                          | Unpaired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d Empty/half-f                       | illed/inco            | mplete Variable                                                | e oxidatio                                          | on Donating and a                                         | ccepting        |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>aC</u>                            | CH <sub>3</sub>       |                                                                |                                                     |                                                           |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                       |                                                                |                                                     |                                                           |                 |  |
| 4b             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н∕°_``                               | н                     |                                                                |                                                     |                                                           |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tructural form                       | ula                   | Ske                                                            | letal fa                                            | ormula                                                    |                 |  |
|                |                                           | But 1 on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hac two hydr                         |                       | on one and of                                                  |                                                     |                                                           |                 |  |
|                |                                           | Dut 1 on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | haa three hu                         | dyens (               |                                                                |                                                     | H5C2                                                      | Н               |  |
| 4c             | One answer from:                          | But-1-ene has three hydrogens attached to $C=C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                       |                                                                |                                                     |                                                           |                 |  |
|                |                                           | results in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the same stru                        | icture                |                                                                | iy S                                                | H                                                         | `H              |  |
|                |                                           | ΔH°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = ΣΔ                                 | Hf <sup>o</sup> (prod | ucts) -                                                        | - Σ                                                 | $\Sigma\Delta H_{f}$ °(reactants)                         |                 |  |
| <b>4</b> d(i)  | 104 LT . L1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                    | (1x-6.99              | 9) -                                                           | . (                                                 | (1×119)+(1×0))                                            |                 |  |
| PART A         | -126 KJ mol <sup>-1</sup>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                    | -6.99                 | -                                                              |                                                     | (119+0)                                                   |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12!                                  | -0.99<br>5.99 kJ      | mol <sup>-1</sup>                                              |                                                     | 119                                                       |                 |  |
|                |                                           | ∆ <b>G</b> °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = Σι                                 | ∆ <b>G</b> °(produ    | cts) -                                                         |                                                     | $\Sigma\Delta {oldsymbol{G}}^{ o}$ (reactants)            |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                    | (1x-65.9              | ) -                                                            | • (                                                 | (1×185)+(1×0) )                                           |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                    | -65.9                 | -                                                              |                                                     | (185 + 0)<br>185                                          |                 |  |
| <b>4</b> 0(i)  | -23.2 J K <sup>-1</sup> mol <sup>-1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                   | 9.1 kJ n              | -<br>nol <sup>-1</sup>                                         | -                                                   | 100                                                       |                 |  |
| PART B         |                                           | ۸ <b>۵</b> ° - ۸Ш۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·- ΤΛς··· Λς·-                       | ∆ <b>G° -</b>         | <u>AH°</u> <u>-119.1 -</u>                                     | 126                                                 | -0 0232 kT K-1 m                                          | J <sup>-1</sup> |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | -T                    | -29                                                            | 8 _                                                 | 22 2 T V-1 I-1                                            |                 |  |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                       |                                                                | = -                                                 | -23.2 J K * MOI*                                          |                 |  |

|                  | The reaction becomes thermodynamically feasible when $\Delta G^\circ$ = 0 |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <b>4d</b> (ii)   | 5431                                                                      | $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0  \therefore \ T\Delta S^{\circ} = \Delta H^{\circ}  \therefore \ T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-126 \times 1000 \text{ J mol}^{-1}}{-23.2 \text{ J K}^{-1} \text{ mol}^{-1}} = 5431 \text{K}$                                               |  |  |  |  |  |
| 5a               | Conjugated system                                                         | A conjugated system is a section of a compound with alternating C=C double bonds and C-C single bonds.                                                                                                                                                                                                                           |  |  |  |  |  |
| =                |                                                                           | 1 <sup>st</sup> Mark Electrons move from HOMO to LUMO                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 55               | Answer to include:                                                        | 2 <sup>nd</sup> Mark Absorption of light (from the visible part of the spectrum) means that light of the complementary colour is seen                                                                                                                                                                                            |  |  |  |  |  |
| 5c               | Answer to include:                                                        | 1 <sup>st</sup> Mark One from: less conjugation double and single bonds a smaller chromophore                                                                                                                                                                                                                                    |  |  |  |  |  |
|                  |                                                                           | 2 <sup>nd</sup> Mark Larger gap between HOMO and LUMO and greater energy (absorbed) as shorter wavelength has greater energy                                                                                                                                                                                                     |  |  |  |  |  |
| 6a               | One answer from:                                                          | Ligands donate pairs of electrons to metal atom (lone pairs or non-bonding pair) Ligands form dative covalent bonds with metal ion                                                                                                                                                                                               |  |  |  |  |  |
| 6b(i)            | C3H8O3S3                                                                  | H = O = S = C = C = S = H $H = O = S = C = C = S = H$ $H = O = S = C = C = S = H$ $H = O = S = C = C = S = H$ $H = O = S = C = C = S = H$ $H = O = S = C = C = S = H$ $H = O = S = C = C = S = H$                                                                                                                                |  |  |  |  |  |
| 6b(ii)           | Bidentate                                                                 | An electron pair on each Sulphur in the thiol -SH groups donate one of their lone                                                                                                                                                                                                                                                |  |  |  |  |  |
| PART A<br>6b(ii) | 4                                                                         | Each DMPS ligand molecule donates lone pairs of from two of its sulphur atoms to give four dative covalent bonds on the Mercury ion in the centre.                                                                                                                                                                               |  |  |  |  |  |
| <b>6</b> C(i)    | Gravimetric                                                               | Gravimetric analysis involves measuring the mass accurately to calculate the number of moles of substances                                                                                                                                                                                                                       |  |  |  |  |  |
| 6c(ii)           | 96.1%                                                                     | no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{4.82g}{388.7 \text{ g mol}^{-1}}$ = 0.0167mol<br>0.0167mol complex contains 0.0167mol Ni ions<br>mass of Ni = no. of mol × gfm = 0.167mol × 58.7g mol^{-1} = 0.98g<br>% mass = $\frac{\text{mass of Ni}}{\text{mass of Allow}}$ × 100 = $\frac{0.98}{1.02}$ × 100 = 96.1% |  |  |  |  |  |
| <b>7a</b> (i)    | Electrophilic<br>Substitution                                             | Adding onto a benzene ring is electrophilic substitution. The H on the benzene ring is joins to the Cl and the remainder of that molecule joins onto the benzene ring.                                                                                                                                                           |  |  |  |  |  |
|                  |                                                                           | Primary Amine Secondary Amine Tertiary Amine                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| <b>7a</b> (ii)   | Secondary                                                                 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                  |                                                                           | 1 Carbon attached to the Nitrogen 2 Carbons attached to the Nitrogen 3 Carbons attached to the Nitrogen                                                                                                                                                                                                                          |  |  |  |  |  |
| 7a(iii)          | lithium<br>aluminium hydride                                              | Step 3 converts a ketone into a secondary alcohol. This reaction is reduction and a reducing agent like lithium aluminium hydride LiAlH4 will carry out this reaction.                                                                                                                                                           |  |  |  |  |  |
| 7a(iv)           | Step 3                                                                    | A chiral centre is when the carbon has four different groups attached.<br>OH H<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H                                                                                                                                                                                        |  |  |  |  |  |

| 7b                   | 0.15mg                                                                                                                                | <ul> <li>500ppm = 500mg per litre</li> <li>∴ 1 litre of adrenaline solution contains 500mg adrenaline</li> <li>1000cm<sup>3</sup> of adrenaline solution contains 500mg adrenaline</li> <li>0.3cm<sup>3</sup> of adrenaline solution contains 500mg adrenaline x <sup>0.3</sup>/<sub>1000</sub> = 0.15mg</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7с                   | Diagram showing:                                                                                                                      | Labelled start<br>positions of the<br>extract and pure<br>samples on a<br>horizontal line.<br>This line must be<br>above the level of the<br>solvent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8a                   | 0.97                                                                                                                                  | In Step 1, 13% ethanol is produced 13cm <sup>3</sup> ethanol and 87cm <sup>3</sup> water<br>1cm <sup>3</sup> ethanol = 0.79g ∴ 13cm <sup>3</sup> ethanol = 10.27g<br>1cm <sup>3</sup> water = 1.00g ∴ 87cm <sup>3</sup> ethanol = 87.00g<br>d = $\frac{m_1 + m_2}{100} = \frac{10.27 + 87.00}{100} = 0.9727 \text{ g cm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8b                   | One answer from:                                                                                                                      | Boiling points (some) water evaporates at Any mention of attraction or are similar ethanol's boiling point forces between water and ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 80                   | One answer from:                                                                                                                      | Water molecules ethanol molecules ethanol molecules water molecules pass water molecules are smaller than are too large to are larger than through but ethanol are transed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 00                   |                                                                                                                                       | ethanol molecules pass through water molecules molecules cannot the sieve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8d                   | Open Question<br>to include:                                                                                                          | ethanol moleculespass throughwater moleculesmoleculesanot makerthe sieve3 mark answer2 mark answer1 mark answerthe sieveDemonstrates a good understanding of<br>the chemistry involved. A good<br>comprehension of the chemistry has<br>provided in a logically correct, including<br>a statement of the principles involved<br>and the application of these to respondDemonstrates a<br>reasonable understanding<br>of the chemistry involved,<br>making some statement(s)<br>which are relevant to the<br>situation, showing that the<br>problem is understood.Demonstrates a<br>reasonable understanding<br>of the chemistry involved,<br>making some statement(s)<br>which are relevant to the<br>situation, showing that the<br>problem is understood.Demonstrates a<br>to the situation, showing that the<br>problem is understood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8d<br>9a             | Open Question<br>to include:<br>(Base-induced)<br>Elimination                                                                         | ethanol moleculespass throughwater moleculesmoleculesanot of mapped in the sieve3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of<br>the chemistry involved. A good<br>comprehension of the chemistry has<br>provided in a logically correct, including<br>a statement of the principles involved<br>and the application of these to respond<br>to the problem.Demonstrates a<br>reasonable understanding<br>of the chemistry involved,<br>making some statement(s)<br>which are relevant to the<br>situation, showing that the<br>problem is understood.Demonstrates a limited<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8d<br>9a<br>9b       | Open Question<br>to include:<br>(Base-induced)<br>Elimination<br>Mechanism showing:                                                   | ethanol moleculespass throughwater moleculesmolecules cannotthe sieve3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of<br>the chemistry involved. A good<br>comprehension of the chemistry has<br>provided in a logically correct, including<br>a statement of the principles involved<br>and the application of these to respondDemonstrates a<br>reasonable understanding<br>of the chemistry involved,<br>making some statement(s)<br>which are relevant to the<br>situation, showing that the<br>problem is understoad.Demonstrates a limited<br>understanding of<br>the chemistry within the<br>problem is understoad.Elimination reactions involve the removal of a small water leaving behind a C=C<br>double bond. Elimination reactions are the opposite reactions to addition reaction. $\frac{2^{rd} Mark}{Carrect}$<br>Curly arrow showing water<br>attacking carbocation<br>$\frac{3^{rd} Mark}{Larect}$<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8d<br>9a<br>9b<br>9c | Open Question<br>to include:<br>(Base-induced)<br>Elimination<br>Mechanism showing:<br>H H H H H<br>H - C - C - C - C - H<br>H H OH H | ethanol moleculespass throughwater moleculesmoleculesmolecules cannotthe sieve3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of<br>the chemistry involved. A good<br>comprehension of the chemistry has<br>provided in a logically correct, including<br>a statement of the principles involved<br>and the application of these to respond<br>to the problem.Demonstrates a<br>reasonable understanding<br>of the chemistry involved,<br>making some statement(s)<br>which are relevant to the<br>situation, showing that the<br>problem is understood.Demonstrates a limited<br>understanding<br>of the chemistry involved,<br>a little of the chemistry within the<br>problem is understood.Elimination reactions involve the removal of a small water leaving behind a C=C<br>double bond. Elimination reactions are the opposite reactions to addition reaction.Image: Carry arrow from<br>double bond to H*Carrect<br>carbocation drawnCarly arrow showing water<br>attacking carbocation<br>being removed from waterImage: Carly arrow showing here<br>double bond to H*Image: Carly arrow showing water<br>attacking carbocationCurly arrow showing water<br>attacking carbocationImage: Carly arrow showing here<br>double bond to H*Image: Carly arrow showing hydrogen<br>attacking carbocationCurly arrow showing hydrogen<br>the chemistry induced<br>attacking carbocationImage: Carly arrow showing hydrogen<br>double bond to H*Image: Carly arrow showing hydrogen<br>carbocation drawnCurly arrow showing water<br> |

|                | 1.32×10 <sup>-4</sup> l mol <sup>-1</sup> s <sup>-1</sup>   | rate = k[C4H9Br][OH <sup>-</sup> ]                                                                                                                                                    |
|----------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1            |                                                             | $k = \frac{rate}{[C_4H_9Br] \times [OH^-]}$                                                                                                                                           |
| 90(11)         |                                                             | $= \frac{3.3 \times 10^{-6} \text{ mol } l^{-1} \text{ s}^{-1}}{0.25 \text{ mol } l^{-1} \times 0.10 \text{ mol } l^{-1}}$                                                            |
|                |                                                             | = $1.32 \times 10^{-4} \text{ l mol}^{-1} \text{ s}^{-1}$                                                                                                                             |
| 10a            | Delocalised electrons                                       | Benzene rings have six delocalised electrons which provide the stability in a benzene molecule.                                                                                       |
| 10b            | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 3d <sup>7</sup> | Co atom: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 4s^2$ $Co^{2+}$ ion : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7$                                                                                         |
| <b>10c</b> (i) | All fours sections                                          | solutions of known suitable Mention of a Absorbance/transmittance                                                                                                                     |
| PART A         | required:                                                   | prepared used only measurement measured/plotted                                                                                                                                       |
| 10c(i)         | Both sections                                               | The absorbance/transmittance of the mention of using the graph to turn unknown's                                                                                                      |
| PART B         | required:                                                   | unknown is measured absorbance/ fransmittance back into concentration                                                                                                                 |
| 10c(ii)        | Propan-1-ol                                                 | Propanal is an aldehyde and will reduce to for the primary alcohol propan-1-ol.<br>Other reduction reactions:<br>carboxylic acid aldehyde primary alcohol<br>ketone secondary alcohol |
| 10d            | 1                                                           | Every bond in the decamethylcobaltocene is identical<br>i.e. aromatic carbon with a methyl -CH3 group attached                                                                        |